“Opening up” Math Class

In an effort to write more I’m going to be posting shorter posts on things that are on mind regarding education and mathematics. Writing helps me process and refine my ideas and I believe it will make me a better educator.

I often think about “opening up” my math class. By “opening up” I mean developing my class in such a way that students have time to explore ideas (preferably ideas that are of interest to them, but also concepts that are in the standards).  In this setting students would be encouraged to do a number of things on a regular basis.

First, they’d be encouraged to explore wrong answers. If a student got an answer wrong they would take time to figure out why, and represent the correct solution in multiple ways (graphing, algebraically, numerically, verbally, etc.). We so often don’t have time for this and don’t value this type of exploration. I think that should change.

Second, they’d be encouraged to take ideas further on their own, in class. A good example is synthetic division vs. long division of polynomials. We always tell students that synthetic division only works in certain situations, but what about that student that wants to know why? How do we support that student? Because if that student is allowed to explore that idea he/she will likely come away with an understanding of polynomials that is far deeper than if I just told him/her the reason. (God forbid the student came up with a reason I hadn’t thought of!)

Third, students would be encouraged to work on meaningful tasks involving mathematics in small groups. These might be “real world” projects or, equally valuable, deep explorations in mathematics. The objective for the group would be not only to solve the problem(s) but to be able to communicate the solution in a meaningful (dare I say visually meaningful and appealing) way.

I do some of this on a small scale in my various classes, but I am quite often up against two major adversaries: the curriculum and time. Although I am up against this, I think that if I “opened up” my class my students would become better thinkers, communicators, and self-motivated learners. In general I think they’d become more mathematically minded and I think it is incredibly valuable to have a society of mathematically minded individuals (more on this in a future post!). I think this is why educators have to be creative, take risks, and embrace technology. That combination, for me, has been powerful in helping me to take what steps I have toward the “open” math class.

If I think of more ways in which math class could be opened up I will be sure to update. Please give me your feedback and ways in which you “open up” your class (math or otherwise)!

20140318-155339.jpg

Let Students Explore and Collaborate (week 1)

We had a great first week! This is my third year of teaching and this is by far the most excited I have been for the rest of the school year. Steve Kelly and I tried a few new things last year in pre calculus and calculus that we didn’t care for, so we revamped the prerequisite units in pre calculus and calculus (again). I have provided links to both documents.

In pre calculus we created a packet for the students with 5 activities. The first asked them to make a piece of art using Geogebra or Desmos and then upload that art to their blog. This had kids a little confused and some weren’t really sure how to begin. It helped that I gave them an example of art I made with Desmos. I don’t think this was a terrible situation as I think it gave activity 5 more meaning and the final works of art were much better. The intermediate activities build on one another And are designed to lead the student to an understanding of the families of functions and transformations. This should be review, but quite often the families of functions are taught in isolation and students lose the big picture. This is especially true for the understanding of how any function is moved left, or right or up-and-down, or reflected. Our objective was that by the end of the packet students would be able to create a better piece of art and understand why their art looked the way that it did.

In calculus, Steve and I sat down together and determined the concepts in mathematics that are most important to be successful in calculus. These included skills like understanding composition of functions, graphical reasoning skills, algebraic manipulation skills, domain and range analysis, and a myriad of other skills. This was successful, as students were given an opportunity to refresh their brains, get back into math mode, and collaborate.

Both of these activities, although in structure were quite different, set the stage for a year full of collaboration and communication.

(I will post some the artwork in another post.)

Calculus packet

Precalculus Packet